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Abstract

The reverse atom transfer radical polymerization (RATRP) technique using FeCl3/iminodiacetic acid (IMA) complex as a catalyst was applied

to the living radical polymerization of acrylonitrile (AN). A hexa-substituted ethane thermal initiator, diethyl 2,3-dicyano-2,3-diphenylsuccinate

(DCDPS), was firstly used as the initiator in this iron-based RATRP system. The polymerization in N,N-dimethylformamide not only shows the

best control of molecular weight and its distribution but also provides rather rapid reaction rate with the ratio of [AN]:[DCDPS]:[FeCl3]:[IMA] at

500:1:2:4. The rate of polymerization increases with increasing the polymerization temperature and the apparent activation energy was calculated

to be 49.9 kJ molK1. The polymers obtained were end-functionalized by chlorine atom, and they were used as macroinitiators to proceed the chain

extension polymerization in the presence of FeCl2/IMA catalyst system via a conventional ATRP process. The resultant polyacrylonitrile fibers

were obtained with the fineness at 1.16 dtex and the tenacity at 6.01cN dtexK1.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

High molecular weight and narrow polydispersity is an

essential requirement for the synthesis of polyacrylonitrile

(PAN) polymers satisfying the requirements for high perform-

ance PAN fibers [1]. PAN is usually prepared by radical

polymerization without control over molecular dimension and

structure [2,3], while other methods exist for more controlled

polymerization of acrylonitrile (AN), such as anionic polymer-

ization, which often involves complex catalysis or side

reactions with the nitrile groups [4–6]. Living/controlled free

radical polymerization can be used as an alternative [7].

Several methods, such as atom transfer radical polymerization

(ATRP) [8], reverse addition fragmentation chain transfer

(RAFT) [9,10], etc. have been developed in the living radical

polymerization process. ATRP is one of the most widely used

methods, which involve a fast dynamic equilibrium between

dormant species and active radical species to provide control
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[11–18], ATRP of AN has been studied systemically [19–25].

However, transition-metal-catalyzed ATRP has two major

drawbacks: the toxicity of the halide species RX and the

oxidation of the catalyst Mt
n=LX by oxygen in air. To overcome

these drawbacks, the use of conventional radical initiators in

the presence of complexes of transition metals in their higher

oxidation state, have been reported and referred to as reverse

ATRP (RATRP) by Matyjaszewski [26–28] and the other

researchers [29–32]. It is important to find new initiators and

new catalytic systems that are less toxic to human health for

RATRP. In the past, only two kinds of initiators, such as azo-

and peroxide compounds, were employed as the initiator in the

RATRP system [33,34]. It is well known that the decompo-

sition of conventional initiators is irreversible, which makes the

concentration of primary radicals rather high, especially at the

early stage of polymerization at high temperature. The

development of new type initiators for RATRP, using

carbon–carbon bond initiator instead of azo or peroxide ones,

is of interest. This new type initiator could provide the

initiation step of RATRP, in which the initiator

reversibly decomposes to primary radicals, unlike other

conventional initiators resulting in suitable amounts of

primary radicals being generated. Qin [35] has

introduced a carbon–carbon bond thermal initiator, diethyl
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Fig. 1. First-order kinetic plot of monomer consumption as a function of time in

different solvents during reverse ATRP of AN with [AN]Z8.0 M and

[AN]:[DCDPS]:[FeCl3]:[IMA]Z500:1:2:4 at 70 8C.
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2,3-dicyano-2,3-diphenylsuccinate (DCDPS), instead of AIBN

into the iron-based RATRP system for styrene polymerization.

Acids were generally believed to deactivate the metal organic

catalyst, resulting in poor control of the polymerization.

However, acids, which are inexpensive and nontoxic, complex

more easily with iron and may, therefore, act as a ligand.

Shenmin has reported ATRP of styrene catalyzed by FeCl2/

succinic acid [36].

Given these concepts, this study was firstly to investigate the

synthesis of polyacrylonitrile with high molecular weight and

narrow polydispersity using RATRP of AN. A novel catalyst

system based on iron complexes with iminodiacetic acid (IMA)

and a new thermal initiator, DCDPS were used for the first time

for AN polymerization using RATRP method. The first

successful attempt of the well-controlled RATRP of AN in

N,N-dimethylformamide was described. The main work was

targeted on the catalytic activity of the catalyst system for the

polymerization and chain growing with its own monomer using

polyacrylonitrile as macroinitiator. Effects of temperature on

the polymerization were also discussed and the overall

activation energy for the polymerization system was calcu-

lated. In addition, the properties of the resultant fibers prepared

by AN polymers were determined.

2. Experimental

2.1. Materials

Acrylonitrile (AN, Shanghai Chemical Reagents Co., A.

R. grade) was vacuum distilled from CaH2 just before

polymerization. FeCl3 (anhydrous) was prepared from

FeCl3$6H2O (Shanghai Chemical Reagents Co., A. R.

grade) treated with thionyl chloride according to reference

procedure [37] and dried under vacuum at 60 8C before use.

DCDPS was prepared according to the method reported

previously [38]. Iminodiacetic acid (IMA, Shanghai Chemi-

cal Reagents Co., A. R. grade) was used as received without

purification. N,N-dimethylformamide (DMF, Shanghai Don-

gyi Chemical Reagents Co.) was distilled at reduced

pressure and stored over type 4-Å molecular sieves before

use. Anisole, toluene and dimethylsulfoxide (Shanghai

Chemical Reagents Co., A. R. grade) were used as received.

2.2. Polymerization

A typical example of the general procedure was as follows.

FeCl3, IMA and DMF were added to a dry tube under stirring,

four cycles of vacuum nitrogen were applied to remove the

oxygen. After the catalyst was dissolved, AN with DCDPS

dissolved in advance was added via an argon-washed syringe.

The tube was then sealed under nitrogen and immersed in an oil

bath held at the desired temperature by a thermostat. After a

definite time, the polymerization was terminated by cooling the

flask in ice water. The polymerization product was dissolved in

DMF. The resultant mixture was then poured into a large

amount of methanol for precipitation, washed with methanol

several times and dried at 60 8C under vacuum.
2.3. Characterization

The conversion of the monomer was determined gravime-

trically. The molecular weight (Mn) and polydispersity index

(PDI) of AN polymers were measured by gel permeation

chromatography (GPC) and many angle laser light scatter

(MALLS) made by Wyatt Technology Corp.; the GPC-

MALLS system involves a Styagel HWN 6E GPC column, a

Wyatt OPTILAB RI detector, and a Wyatt MALLS detector

(DAWN E). All samples was performed at a flow rate of

1.0 mL minK1. The analysis was undertaken at 30 8C with

purified high-performance-liquid-chromatography-grade DMF

as an eluent.

In order to compare with the above measurements of the

molecular weight of AN polymers, the theoretical molecular

weight (Mth) was used. According to the characteristics of

living polymerization, Mth could be calculated from the

following equation [39]

Mth Z
½AN�

2½DCDTS�
!MwAN!Conversion (1)

where MwAN is the molecular weight of AN.
3. Results and discussion

3.1. Polymerization of AN with the DCDPS/FeCl3/IMA

initiating system

AN was polymerized catalyzed by FeCl3/IMA with DCDPS

as the initiator in the different solvents at 70 8C

([AN]:[DCDPS]:[FeCl3]:[IMA]Z500:1:2:4). After heating, a

change of color from deep orange to light yellow was observed

as described by Moineau et al. [40]. This corresponds to the

decomposition of DCDPS and the establishment of the

equilibrium between Fe3C and Fe2C. Fig. 1 shows kinetic

plots of ln[M]0/[M] versus time. The linearity of the plot

indicates that the polymerization is approximately first-order

with respect to the monomer concentration. The slope of the

kinetic plots indicates that in the polymerization process,
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Fig. 2. Dependence of Mn on the monomer conversion in different

solvents for reverse ATRP of AN with [AN]Z8.0 M and

[AN]:[DCDPS]:[FeCl3]:[IMA]Z500:1:2:4 at 70 8C.
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the number of active species is constant. As shown in Fig. 1, the

rate of polymerization in DMF is unexpectedly faster than in

anisole and toluene. The monomer conversion in DMF reached

about 66.3% within 20 h. The corresponding value of the

apparent rate constant ðk
app
p Þ calculated from the kinetic plot is

1.51!10K5 sK1. A similar result was reported by Shenmin

[41] for iron-mediated ATRP. The experimental data reported

in this study are different from those reported by Pascual [42],

who used 2,2 0-bipyridine, and Ziegler [43], who used

monodentate amines as the ligands in copper-mediated

systems. They concluded that DMF affects the living nature

of ATRP. In our RATRP system, DMF has no significant effect

on the living nature if there is sufficient ligand to complex the

transition metal.

Fig. 2 indicates that the molecular weights of the resulting

polymers measured by GPC increase linearly with conversion

when DMF was used as the solvent, and the molecular weights

agree reasonably well with the theoretical molecular weight.

The high molecular weight at conversion less than 10%

indicates the incomplete decomposition of DCDPS at the

beginning of the reaction resulting small amount of the

polymer chain. A similar phenomenon has been observed

[44]. The initiation efficiency f of DCDPS in DMF is calculated

from fZMth/Mn to be 0.91 (conversionZ66.3%). These results

reveal that the polymerization of AN with DCDPS/FeCl3/IMA
Scheme 1. Polymerization mechanism of reverse ATRP of AN including the

ligand structure.
initiating system in DMF is a living/controlled radical

polymerization process. A polymerization mechanism is

proposed, as described in Scheme 1. In the initiation step,

after the homolytic decomposition of one DCDPS (I–I) into

two primary radicals (I%), these radicals can add to the

monomer. Then, the activated monomer radicals (R%) react

with FeCl3/IMA through chlorine atom transfer and generate

the lower oxidation state metal complex, FeCl2/IMA. Finally,

the polymer propagates via a conventional ATRP process.

The values of PDI of AN polymers are shown in Fig. 3. For

DMF systems, the polydispersity is narrow (PDIZ1.19) when

the conversion goes beyond 15%, and a broader polydispersity

is obtained when the conversion is less than 15%. The slow rate

of the primary radicals at 70 8C produced from the

decomposition of DCDPS changing into dormant species is

responsible for the broader polydispersity during the initial

polymerization in the reaction system. In other words, the

RATRP system will set up as the conversion goes beyond 15%.

The dielectric constants of the three solvents are in the

following order: 3DMF (37.6, 20 8C), 3anisole (4.33, 20 8C),

3toluene (2.39, 20 8C). The polymerization is quite sensitive to

the solubility of the catalyst. When using anisole and toluene as

the solvent, the polymerizations were heterogeneous due to the

limited solubility of FeCl3 and IMA in monomer. The thermal

decomposition rates of DCDPS in anisole and toluene are not

high, the RATRP processes have lower initiation efficiencies,

and this may be the reason for the low amount of the polymer

chains, which produces higher molecular weight than that of

the theoretical value (Fig. 2). Addition of DMF increases the

solubility of the catalyst in monomer and provides a

homogeneous catalyst system. In addition, the polarity of the

solvent can also affect the metal complex structure. In a polar

solvent DMF, ClKFe2C(IMA)2Cl
K may exist, but in a less

polar solvent, (IMA)FeCl3Fe(IMA) could exist [45]. Thus, the

DMF-based system provides the desired characteristics of

higher initiation efficiency, low polydispersity, and a fast

polymerization rate.
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Fig. 3. Dependence of PDI on the monomer conversion in different solvents for

reverse ATRP of AN with [AN]Z8.0 M and [AN]:[DCDPS]:[FeCl3]:[IMA]Z
500:1:2:4 at 70 8C.



Table 1

Data for RATRP of AN catalyzed by FeCl3/IMA

Entry [DCDPS]:

[FeCl3]:[IMA]

Time (h) Conversion

(%)

Mth Mn PDI k
app
p !105ðsK1Þ Initiation

efficiency

1 1:1:2 20 73.5 9739 11730 1.25 1.84 0.83

2 1:2:4 66.3 8785 9650 1.19 1.51 0.91

3 1:3:6 51.6 6837 7430 1.17 1.01 0.92

4 1:4:8 44.5 5896 6270 1.15 0.82 0.94

5 1:2:2 64.8 8586 9540 1.18 1.45 0.90

6 1:2:5 51.7 6850 8150 1.20 1.01 0.84

7 1:2:6 45.7 6055 7570 1.21 0.85 0.80

8 1:1:4 71.5 9474 12300 1.26 1.74 0.77

9 1:4:4 49.1 6505 7070 1.14 0.94 0.92

10 1:5:4 38.9 5154 5540 1.13 0.68 0.93

[AN]Z8.0 M, [AN]:[DCDPS]Z500:1, tZ70 8C.

Table 2

Kinetic data for RATRP of AN at different temperature with [AN]Z8.0 M and

[AN]:[DCDPS]:[FeCl3]:[IMA]Z500:1:2:4

Temperature (8C) k
app
p !105ðsK1Þ

60 0.89

65 1.15

70 1.51

72 1.67

75 1.94

80 2.47

85 3.14
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3.2. Effect of FeCl3/IMA catalyst system on RATRP of AN

It has been reported that IMA might decrease the initiator

efficiency, leading to an increase in the observed molecular

weight [46]. To further investigate the effects of IMA, a series

of experiments of RATRP of AN were carried out. The results

have been compiled in Table 1. In this study, different

conclusions are drawn. As more FeCl3/IMA catalyst system

was added (entries 1–4), slower polymerization rates and

narrower molecular weight distributions were observed, and

the initiation efficiency also increased from 0.83 to 0.94, which

suggests that the concentration of FeCl3 has a favorable

influence on the activation as well as equilibrium of RATRP.

With increasing the amount of IMA in the catalyst system

(entries 2, 5–7), the rate of polymerization and initiation

efficiency showed a trend of decrease while the molecular

weight distribution of polymers remained narrow. This

illustrates that a large amount of IMA not only poison the

metal catalyst, but also it has a role in producing a more

significant side reaction, such as a reaction with active species,

or catalyzing the elimination of the initiator. When the ratio of

[FeCl3]/[IMA] was changed from 1:4 to 5:4 (entries 2, 8–10),

the molecular weight distribution of polymers decreased from

1.26 to 1.13, and the initiation efficiency increased from 0.77 to

0.93, but the rate of polymerization decreased prominently.

This implies that FeCl3 itself is an effective catalyst in RATRP.

3.3. Effect of the polymerization temperature on the

polymerization

Effect of the polymerization temperature on RATRP of AN

was investigated. The experimental results are given in

Table 2. The apparent rate constant increases with increasing

temperature. The Arrhenius plot obtained from the experimen-

tal data given in Table 2, was given in Fig. 4. The apparent

activation energy was calculated to be 49.9 kJ molK1.

According to Eq. (2) and DHpropZ22.3 kJ molK1 [47]

DH0
eq ZDHappKDHprop (2)

where DH0
eq is the enthalpy of the equilibrium, DHapp is the

apparent enthalpy of activation, and DHprop is the activation

enthalpy of propagation. Then, DH0
eqZ27:6 kJ molK1 was
calculated for RATRP of AN initiated by DCDPS/FeCl3/IMA.

This value is smaller than those for the polymerization of

methyl methacrylate ðDH0
eqZ43:9 kJ molK1Þ [48] for the

FeCl3/isophthalic acid system and is bigger than those for the

polymerization of styrene ðDH0
eqZ26:5 kJ molK1Þ for the Cl-

mediated system and 20.2 kJ molK1 for the Br-mediated

system [49].
3.4. Chain extension of PAN

According to the initiation mechanism of DCDPS [35] and

the mechanism polymerization of RATRP using DCDPS/

FeCl3/IMA system, the well-defined polyacrylonitrile with an

u-chlorine atom end groups will be obtained in the

polymerization of AN using DCDPS/FeCl3/IMA system.

Therefore, the obtained PAN can act as a macroinitiator for

the extension polymerization. It is reported that the limited

solubilty of PAN, even in its own monomer-acrylonitrile,

prevented the formation of high polymer using ATRP [50,51].

Thus, in this study, DMF was used as the solvent to enable the

formation of high molar mass PAN. The extension polymer-

ization of the obtained PAN (MnZ9650, PDIZ1.19) with AN

was carried out in DMF at 80 8C in the presence of the FeCl2/

IMA catalyst system. As shown in Fig. 5, when [AN]Z8.0 M,

[AN]:[PAN]:[FeCl2]:[IMA]Z500:1:2:4, tZ40 h, the conver-

sion was 95%. It clearly demonstrates the chain extension

of polyacrylonitrile takes place. The theoretical value of

the molecular weight of polyacrylonitrile is calculated from

MthZ9650C53!([AN]/[PAN]!conversion) to be 34825. In

this case, polyacrylonitrile obtained was with MnZ35,600,
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PDIZ1.27, which suggests the coupling of high molecular

chains.
3.5. Properties of the fibers prepared by AN polymers

In order to obtain high performance PAN fibers, the extension

polymerization of the obtained PAN (MnZ9650, PDIZ1.19)

with AN was carried out in DMF at 80 8C in the presence of the

FeCl2/IMA catalyst system. When [AN]Z8.0 M,

[AN]:[PAN]:[FeCl2]:[IMA]Z1500:1:2:4, tZ40 h, the conver-

sion was 90%. Polyacrylonitrile obtained was with MnZ83,250,

PDIZ1.28. Davis [52] and Shipp [53] also draw the same

conclusion and reported there is reduced termination with

initiator dilution experiments. AN polymers with MnZ83,250,

PDIZ1.28 prepared by RATRP were washed with methanol

several times and dissolved in dimethylsulfoxide after drying

under vacuum to get a clear dope. The obtained dope was

deaerated, filtered, and then pumped through a spinneret to a

coagulation bath. After a definite time, the coagulated protofibers

were obtained. The wet-spun protofibers were washed and drawn

in three steps in a water bath, and the filaments were then dried to

collapse them, further drawn in steam, set, dried, and wound to

fibers. The overall draw ratio was 12.5. The fibers were obtained

with the fineness at 1.16 dtex and the tenacity at 6.01cN dtexK1.

The fibers satisfy the requirements for high performance PAN

fibers and can be used to prepare carbon fibers.
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Fig. 5. GPC curves of polyacrylonitrile before and after a chain extension

reaction.
4. Conclusions

The new catalyst system, DCDPS/FeCl3/IMA, was success-

fully used in the RATRP of AN in DMF. When the ratio of

[AN]:[DCDPS]:[FeCl3]:[IMA] equals 500:1:2:4, the polymer-

ization was best controlled. Increasing the dosage of the

catalyst system would decrease the rate of polymerization and

enhanced the degree of the controlled polymerization. The rate

of polymerization increases with increasing the polymerization

temperature and the apparent activation energy was calculated

to be 49.9 kJ molK1. Polyacrylonitrile obtained were end-

functionalized by chlorine atoms and can act as a macro-

initiator for the extension polymerization. The resultant fibers

obtained from AN polymers satisfy the requirements for high

performance PAN fibers and can be used to prepare carbon

fibers.
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